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The content of the talk

Newton polyhedra theory connects algebraic geometry to the
geometry of convex polyhedra with integral vertices in the
framework of toric geometry.

We compute the number of irreducible components of an algebraic
variety X defined in the torus (C∗)n by a generic system of k
polynomial equations with fixed Newton polyhedra.

Our results generalize the famous Bernstein-Kouchnirenko theorem
computing the number of solutions in the torus (C∗)n of a generic
system of n polynomial equations with fixed Newton polyhedra.

The amazing Bernstein-Kouchnirenko theorem inspired much
activity that eventually lead to the creation of the Newton
polyhedra theory, of a birationally invariant version of the
intersection theory for divisors [3] and of the theory of
Newton-Okounkov bodies [4,5].
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Newton polyhedra

A Laurent polynomial P is a linear combination of monomials.
The support s(P) is the set of the powers of the monomials in P.
The Newton polyhedron ∆(P) is the convex hull of s(P).

Example. Let P be y2 + a0 + a1x + a2x
2 + a3x

3, where a0 6= 0,
a1 6= 0, a2 6= 0, a3 6= 0. Then ∆(P) is
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and s(P) = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 2)}.

Discrete invariants of X ⊂ (C∗)n defined by a generic system of
equations P1 = · · · = Pk = 0 with fixed support s(Pi ) depend only
on Newton polyhedra ∆(P1), . . . ,∆(Pk) of P1, . . . ,Pk .
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Curve X ⊂ (C∗)2 defined by a generic equation P = 0

Example 1 (Kh). The genus g(X ) is equal to the number B(∆)
of integral points in the interior of ∆ = ∆(P).

Example 2 (Kh). Let X̄ = X
⋃
A(X ) be a smooth compact

model of X . Then #A(X ) equals to the number of integral
points in the boundary of ∆.

Example 3 (D.Berstein, Kh). The Euler characteristic χ(X ) of
X is equal to the volume V (∆) of ∆ multiplied by −2!

Toy geometric application. The invariants 1)-3) are related:
χ(X̄ ) = χ(X ) + #A(X ) = 2− 2g(X ).
It implies the Pick formula for an integral polygon ∆:
V (∆) = #((∆ \ ∂∆)

⋂
Z2) + 1/2#∂(∆

⋂
Z2)− 1.
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Newton polyhedra and Toric varieties
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Toric variety is a normal connected n-dimensional algebraic
variety M on which an (C∗)n acts algebraically and has one orbit
isomorphic to (C∗)n. Under the action of (C∗)n, M is broken up
into a finite number of orbits isomorphic to tori of different
dimensions. To every Newton polyhedron ∆ we can associate a
compact projective toric variety M∆ in such a way that every
k-dimensional face Γ ⊂ ∆ corresponds to a complex k-dimensional
orbit OΓ ⊂ M∆. If Γ1 ⊂ Γ2 then OΓ1 ⊂ ŌΓ2 .
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When generic complete intersection is empty?

Definition 1 For fixed k-tuple of convex bodies ∆1, . . . ,∆k in Rn

for any nonempty subset J ⊂ {1, . . . , k} we define the defect d(J)
of J to be the number d(J) = dim(∆J)− |J|, where
∆J =

∑
i∈J ∆i and |J| is the number of elements in J.

Definition 2 We call k-tuple ∆1, . . . ,∆k of convex bodies
independent if the defect of any nonempty subset J ⊂ {1, . . . , k} is
nonnegative.

Theorem (David Bernstein, 1975) The algebraic variety
X ⊂ (C∗)n defined by a generic system of equations
P1 = · · · = Pk = 0 with fixed support s(Pi ) is nonempty if and
only if the k-tuple of Newton polyhedra ∆1, . . . ,∆k of P1, . . . ,Pk

is independent (in the sense of Definition 2).
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How many solutions in (C∗)n has a system of equations
P1 = · · · = Pn = 0 where P1, . . . ,Pn are generic Laurent
polynomials with the fixed supports A1, . . . ,An ⊂ Zn?

Theorem (Kouchnirenko, 1975). If A1 = · · · = An = A then the
number of solutions of the system is equal to the volume V (∆) of
∆ = ∆1 = · · · = ∆n multiplied by n!

The original proof of the theorem was too complicated and did not
explain the unbelievable phenomenon found by Koushnirenko.

Theorem (Bernstein, 1975) The number of solutions is equal to
the mixed volume V (∆1, . . . ,∆n) of ∆1, . . . ,∆n multiplied ny n!

This result is also known as Berstein-Koushnirenko theorem and as
BKK theorem. A lot of proofs of this fantastic fact are known now.
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The integral volume

Let L be a real m-dimensional linear space containing a fixed
discrete additive subgroup Λ ⊂ L of rank m.

Definition. One can defined the unique translation invariant
integral volume on L normalized by the following condition:
m-dimensional parallepiped based on vectors e1, . . . , em ∈ Λ has
the integral volume one if and only if vectors e1, . . . , em form a
basis in Λ.

The space Rn of characters of the torus (C∗)n is equipped with the
lattice Zn of characters, so the integral volume on Rn is well
defined.

Newton polyhedra of Laurent polynomials on the torus (C∗)n
belong to the space Rn of characters, so one can talk about the
integral volume of Newton polyhedra. Exactly this volume we
mean in the statement of the Bernstein-Koushnirenko theorem.
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Mixed volume is a unique function V (∆1, . . . ,∆n) on
n-tuples of convex bodies in ∆i ⊂ Rn, such that:

1 V (∆, . . . ,∆) is the volume of ∆;

2 V is symmetric;

3 V is multi-linear; for example,
V (∆′1 + ∆′′1,∆2, . . . ) = V (∆′1,∆2, . . . ) + V (∆′′1,∆2, . . . );

Mixed volume has the following properties:

4 V is nonnegative, i.e. 0 ≤ V (∆1, . . . ,∆n);

5 ∆′1 ⊆ ∆1, . . . ,∆
′
n ⊆ ∆n ⇒ V (∆′1, . . . ,∆

′
n) ≤ V (∆1, . . . ,∆n);

6 The following Alexandrov–Fenchel inequality holds:
V 2(∆1,∆2, . . . ,∆n) ≥
V (∆1,∆1, . . . ,∆n)V (∆2,∆2, . . . ,∆n);

7 in particular (for n = 2, the unite ball ∆1 and for ∆ = ∆2) the
isoperimetric inequality ( 1

2 length of ∂∆)2 ≥ πV (∆) holds.
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David Bernstein and Minkowsky theorems

The following classical theorem due to Minkowsky.

Theorem (Minkowsky).A given n-tuple of convex bodies in Rn

has the mixed volume equal to zero if and only if the n-tuple of
convex bodies is dependent.

The detailed proof of Minkowsky theorem can be found in [7]).

The David Bernstein theorem can be deduced follows from the
Minkowsky theorem and from the Bernstein-Koushnirenko
theorem.

If in David Bernstein theorem the number of equations k is equal
to the dimension n of ambient space then this deduction is almost
straightforward. The case k < n can be reduced to the case k = n.
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Sufficient condition for irreducibility

Consider a variety X defined in (C∗)n by a system of equations
P1 = · · · = Pk = 0 where P1, . . . ,Pk are generic Laurent
polynomials with fixed supports. Let ∆1, . . . ,∆k be the k-tuple of
Newton polyhedra of P1, . . . ,Pk .

One can assume that the k-tuple ∆1, . . . ,∆k is independent:
otherwise according to the David Bernstein theorem the variety X
defined by a generic system (1) is empty.

The following theorem gives sufficient condition for irreducibility of
the variety X .

Theorem 1 ([7])If for the k-tuple of Newton polyhedra
∆1, . . . ,∆k the defect d(J) of each nonempty subset
J ⊂ {1, . . . , k} is positive then the algebraic variety X defined by a
generic system (1) is irreducible.
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Previously know result on irreducibility

The theorem 1 generalizes the following previously know result.

Theorem 1’ ([2]) If all Newton polyhedra ∆1, . . . ,∆k have
dimension n and k < n then the algebraic variety X is irreducible.

Our proof of the theorem 1 (see [7]) is based on toric technique,
including toric resolution of singularities of toric varieties and
computations of cohomologies of invariant linear bundles on toric
varieties.

Very similar arguments allow to compute the arithmetic genus of
X . For zero dimensional varieties X it implies the
Bernstein-Koushnirenko theorem (see [1,2]).
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The number of irreducible components

Let J = {i1, . . . , ip} ⊂ {1, . . . , k} be a biggest with respect to
inclusion subset among all nonempty subsets with zero defect.

Denote by ∆J the polyhedron ∆J =
∑

i∈J ∆i . Let LJ ⊂ Rn be the
linear space parallel to the smallest affine subspace containing the
polyhedron ∆J . Consider the p-tuple ∆i1 , . . . ,∆ip of Newton
polyhedra (where {i1, . . . , ip} = J).

Polyhedra ∆ij for ij ∈ J can be shifted by parallel translation into
the space LJ . Thus the mixed volume V (∆i1 , . . . ,∆ip) with
respect to the integral volume on LJ is well defined.

Theorem 2 ([7]) In the above notations the number b0(X ) of the
irreducible components of X is equal to p!V (∆i1 , . . . ,∆ip).

The theorem 2 could be easily reduced to the theorem 1 (see [7]).
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Criterium for irreducibility of generic complete intersection

Corollary 1 The variety X is irreducible only in the following cases:

1) the k-tuple ∆1, . . . ,∆k of Newton polyhedra is independent
(see theorem 1);

2) the number p!V (∆i1 , . . . ,∆ip) (see theorem 2) is equal to one.

Because of the corollary 1 the following question is important for
us:

Is it possible to classify geometrically all p-tuples of integral
polyhedra in p-dimensional space whose integral mixed volume
multiplied by p! is equal to one?

The answer on this question is positive. Such classification is
described in [6].
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System of equations defining one irreducible component

With the rational p-dimensional space LJ ⊂ Rn one can associate
the subtorus Tm of dimension m = n − p in the torus (C∗)n,
defined by the following condition: g ∈ Tm if and only if χ(g) = 1
for each character χ whose power belongs to the lattice Zn

⋂
LJ .

The embedding π : Tm → (C∗)n induces the linear map
π∗ : Rn → Rm from the space Rn of characters on (C∗)n to the
space Rm of characters on Tm.

Theorem 3([7]) In the assumptions of the theorem 2 each
irreducible component of the variety X is isomorphic to a variety
Y ⊂ Tm defined by a system Qq1 = · · · = Qqm = 0 where
{q1, . . . , qm} = {1, . . . , k} \ J and Qq1 , . . . ,Qqm is a generic
m-tuple of Laurent polynomials with Newton polyhedra
π∗(∆q1), . . . , π∗(∆qm).

Our proof of the theorem 3 is based on a simple explicit
construction (see [7]).
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Conclusion

Let us summarize the results.

The theorem 2 computes the number b0(X ) of irreducible
components of X .

The theorem 3 allows to compute all natural discrete invariants of
each component of X (each such invariant takes the same value at
all components of X ). Indeed, according to the Newton polyhedra
theory all natural discrete invariants of Y can be computed in
terms of Newton polyhedra π∗(∆q1), . . . , π∗(∆qm).
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